首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   4篇
  国内免费   28篇
化学   171篇
综合类   1篇
物理学   3篇
  2024年   1篇
  2021年   31篇
  2020年   6篇
  2019年   7篇
  2018年   5篇
  2017年   8篇
  2016年   8篇
  2015年   2篇
  2014年   4篇
  2013年   15篇
  2012年   5篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   12篇
  2007年   7篇
  2006年   4篇
  2005年   3篇
  2004年   5篇
  2003年   6篇
  2002年   8篇
  2001年   6篇
  2000年   7篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1987年   1篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
11.
12.
Molecularly imprinted polymers (MIP) combine the selectivity of immunoaffinity chromatography with the robustness of common solid-phase extraction in what is referred to as molecularly imprinted solid-phase extraction (MISPE). This contribution shows how MIP design may be guided by pharmacophore modeling for the example of citrinin, which is an emerging mycotoxin from cereals. The obtained pharmacophore model allowed searching public databases for a set of citrinin-mimicking molecular surrogates. Imprinted and non-imprinted polymers were subsequently obtained through bulk and core-shell polymerization in the presence of these surrogates. Evaluation of their binding ability for citrinin and structurally related ochratoxin A revealed a promising MIP derived from rhodizonic acid. A protocol for MISPE of citrinin from cereals was subsequently developed and compared to immunoaffinity chromatography with respect to clean-up efficiency and recovery.  相似文献   
13.
14.
In this work, we calculated the pair wise chemical similarity for a subset of small molecules screened against the NCI60 cancer cell line panel. Four different compound similarity calculation methods were used: Brutus, GRIND, Daylight and UNITY. The chemical similarity scores of each method were related to the biological similarity data set. The same was done also for combinations of methods. In the end, we had an estimate of biological similarity for a given chemical similarity score or combinations thereof. The data from above was used to identify chemical similarity ranges where combining two or more methods (data fusion) led to synergy. The results were also applied in ligand-based virtual screening using the DUD data set. In respect to their ability to enrich biologically similar compound pairs, the ranking of the four methods in descending performance is UNITY, Daylight, Brutus and GRIND. Combining methods resulted always in positive synergy within a restricted range of chemical similarity scores. We observed no negative synergy. We also noted that combining three or four methods had only limited added advantage compared to combining just two. In the virtual screening, using the estimated biological similarity for ranking compounds produced more consistent results than using the methods in isolation.  相似文献   
15.
Current systems for similarity-based virtual screening use similarity measures in which all the fragments in a fingerprint contribute equally to the calculation of structural similarity. This paper discusses the weighting of fragments on the basis of their frequencies of occurrence in molecules. Extensive experiments with sets of active molecules from the MDL Drug Data Report and the World of Molecular Bioactivity databases, using fingerprints encoding Tripos holograms, Pipeline Pilot ECFC_4 circular substructures and Sunset Molecular keys, demonstrate clearly that frequency-based screening is generally more effective than conventional, unweighted screening. The results suggest that standardising the raw occurrence frequencies by taking the square root of the frequencies will maximise the effectiveness of virtual screening. An upper-bound analysis shows the complex interactions that can take place between representations, weighting schemes and similarity coefficients when similarity measures are computed, and provides a rationalisation of the relative performance of the various weighting schemes.  相似文献   
16.
In the current study, a simple in silico approach using free software was used with the experimental studies to optimize the antiproliferative activity and predict the potential mechanism of action of pyrrolizine-based Schiff bases. A compound library of 288 Schiff bases was designed based on compound 10, and a pharmacophore search was performed. Structural analysis of the top scoring hits and a docking study were used to select the best derivatives for the synthesis. Chemical synthesis and structural elucidation of compounds 16a–h were discussed. The antiproliferative activity of 16a–h was evaluated against three cancer (MCF7, A2780 and HT29, IC50 = 0.01–40.50 μM) and one normal MRC5 (IC50 = 1.27–24.06 μM) cell lines using the MTT assay. The results revealed the highest antiproliferative activity against MCF7 cells for 16g (IC50 = 0.01 μM) with an exceptionally high selectivity index of (SI = 578). Cell cycle analysis of MCF7 cells treated with compound 16g revealed a cell cycle arrest at the G2/M phase. In addition, compound 16g induced a dose-dependent increase in apoptotic events in MCF7 cells compared to the control. In silico target prediction of compound 16g showed six potential targets that could mediate these activities. Molecular docking analysis of compound 16g revealed high binding affinities toward COX-2, MAP P38α, EGFR, and CDK2. The results of the MD simulation revealed low RMSD values and high negative binding free energies for the two complexes formed between compound 16g with EGFR, and CDK2, while COX-2 was in the third order. These results highlighted a great potentiality for 16g to inhibit both CDK2 and EGFR. Taken together, the results mentioned above highlighted compound 16g as a potential anticancer agent.  相似文献   
17.
TASK channels belong to the two-pore-domain potassium (K2P) channels subfamily. These channels modulate cellular excitability, input resistance, and response to synaptic stimulation. TASK-channel inhibition led to membrane depolarization. TASK-3 is expressed in different cancer cell types and neurons. Thus, the discovery of novel TASK-3 inhibitors makes these bioactive compounds very appealing to explore new cancer and neurological therapies. TASK-3 channel blockers are very limited to date, and only a few heterofused compounds have been reported in the literature. In this article, we combined a pharmacophore hypothesis with molecular docking to address for the first time the rational design, synthesis, and evaluation of 5-(indol-2-yl)pyrazolo[3,4-b]pyridines as a novel family of human TASK-3 channel blockers. Representative compounds of the synthesized library were assessed against TASK-3 using Fluorometric imaging plate reader—Membrane Potential assay (FMP). Inhibitory properties were validated using two-electrode voltage-clamp (TEVC) methods. We identified one active hit compound (MM-3b) with our systematic pipeline, exhibiting an IC50 ≈ 30 μM. Molecular docking models suggest that compound MM-3b binds to TASK-3 at the bottom of the selectivity filter in the central cavity, similar to other described TASK-3 blockers such as A1899 and PK-THPP. Our in silico and experimental studies provide a new tool to predict and design novel TASK-3 channel blockers.  相似文献   
18.
A number of cinnamamide derivatives possess anticonvulsant activity due to the presence of a number of important pharmacophore elements in their structures. In order to study the correlations between anticonvulsant activity and molecular structure, the crystal structures of three new cinnamamide derivatives with proven anticonvulsant activity were determined by X‐ray diffraction, namely (R,S)‐(2E)‐N‐(2‐hydroxybutyl)‐3‐phenylprop‐2‐enamide–water (3/1), C13H17NO2·0.33H2O, ( 1 ), (2E)‐N‐(1‐hydroxy‐2‐methylpropan‐2‐yl)‐3‐phenylprop‐2‐enamide, C13H17NO2, ( 2 ), and (R,S)‐(2E)‐N‐(1‐hydroxy‐3‐methyl‐butan‐2‐yl)‐3‐phenylprop‐2‐enamide, C14H19NO2, ( 3 ). Compound ( 1 ) crystallizes in the space group P with three molecules in the asymmetric unit, whereas compounds ( 2 ) and ( 3 ) crystallize in the space group P21/c with one and two molecules, respectively, in their asymmetric units. The carbonyl group of ( 2 ) is engaged in an intramolecular hydrogen bond with the hydroxy group. This type of interaction is observed for the first time in these kinds of derivatives. A disorder of the substituent at the N atom occurs in the crystal structures of ( 2 ) and ( 3 ). The crystal packing of all three structures is dominated by a network of O—H…O and N—H…O hydrogen bonds, and leads to the formation of chains and/or rings. Furthermore, the crystal structures are stabilized by numerous C—H…O contacts. We analyzed the molecular structures and intermolecular interactions in order to propose a pharmacophore model for cinnamamide derivatives.  相似文献   
19.
In this paper theoretical studies were performed on artemisinin (qinghaosu) derivatives with semiempirical quantum chemical methods AMI and PM3. The antimalarial activity -logC has an obvious correlation with the net charge of C(16) and bond orders of bonds O(1)-C(10), O(2)-C(6), O(1)-O(2) and O(5)-C(16). According to the calculation results, we derived structure-activity relationship, presented the probable pharmacophore of qinghaosu derivatives and the interaction fashion between the drugs and the plasmodium receptor.  相似文献   
20.
Summary The conformation in dimethylsulfoxide of the somatostatin derivative angiopeptin and of three disulfide-free analogs was estimated by two-dimensional nuclear magnetic resonance spectroscopy at room temperature. The resulting 3D molecular graphics were compared and shown to reflect the observed differences in the inhibition of restenosis after rat aorta balloon injury by these octapeptide inhibitors. Angiopeptin and its active analog 2 displayed a relatively rigid conformation of the cyclic hexapeptide backbone due to the presence of two well-defined hydrogen bonds, further stabilized by a third hydrogen bond outside the ring. No such constraints were detected for the two biologically inactive analogs, which, compared to 2, had a two-atom longer or shorter hexapeptide ring. The well-defined structure of compound 2 may serve as an improved pharmacophore for this new class of drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号